Discover hidden splicing variations by mapping personal transcriptomes to personal genomes
نویسندگان
چکیده
RNA-seq has become a popular technology for studying genetic variation of pre-mRNA alternative splicing. Commonly used RNA-seq aligners rely on the consensus splice site dinucleotide motifs to map reads across splice junctions. Consequently, genomic variants that create novel splice site dinucleotides may produce splice junction RNA-seq reads that cannot be mapped to the reference genome. We developed and evaluated an approach to identify 'hidden' splicing variations in personal transcriptomes, by mapping personal RNA-seq data to personal genomes. Computational analysis and experimental validation indicate that this approach identifies personal specific splice junctions at a low false positive rate. Applying this approach to an RNA-seq data set of 75 individuals, we identified 506 personal specific splice junctions, among which 437 were novel splice junctions not documented in current human transcript annotations. 94 splice junctions had splice site SNPs associated with GWAS signals of human traits and diseases. These involve genes whose splicing variations have been implicated in diseases (such as OAS1), as well as novel associations between alternative splicing and diseases (such as ICA1). Collectively, our work demonstrates that the personal genome approach to RNA-seq read alignment enables the discovery of a large but previously unknown catalog of splicing variations in human populations.
منابع مشابه
Defining a personal, allele-specific, and single-molecule long-read transcriptome.
Personal transcriptomes in which all of an individual's genetic variants (e.g., single nucleotide variants) and transcript isoforms (transcription start sites, splice sites, and polyA sites) are defined and quantified for full-length transcripts are expected to be important for understanding individual biology and disease, but have not been described previously. To obtain such transcriptomes, w...
متن کاملTIARA: a database for accurate analysis of multiple personal genomes based on cross-technology
High-throughput genomic technologies have been used to explore personal human genomes for the past few years. Although the integration of technologies is important for high-accuracy detection of personal genomic variations, no databases have been prepared to systematically archive genomes and to facilitate the comparison of personal genomic data sets prepared using a variety of experimental pla...
متن کاملKaviar: an accessible system for testing SNV novelty
SUMMARY With the rapidly expanding availability of data from personal genomes, exomes and transcriptomes, medical researchers will frequently need to test whether observed genomic variants are novel or known. This task requires downloading and handling large and diverse datasets from a variety of sources, and processing them with bioinformatics tools and pipelines. Alternatively, researchers ca...
متن کاملThe UniMarker (UM) method for synteny mapping of large genomes
MOTIVATION Synteny mapping, or detecting regions that are orthologous between two genomes, is a key step in studies of comparative genomics. For completely sequenced genomes, this is increasingly accomplished by whole-genome sequence alignment. However, such methods are computationally expensive, especially for large genomes, and require rather complicated post-processing procedures to filter o...
متن کاملWebGMAP: a web service for mapping and aligning cDNA sequences to genomes
The genomes of thousands of organisms are being sequenced, often with accompanying sequences of cDNAs or ESTs. One of the great challenges in bioinformatics is to make these genomic sequences and genome annotations accessible in a user-friendly manner to general biologists to address interesting biological questions. We have created an open-access web service called WebGMAP (http://www.bioinfol...
متن کامل